Alara Resources Limited
ABN: 27 122 892 719
Suite 1.02 110 Erindale Road
Balcatta Western Australia 6021

Tele Email Web

+61 8 9240 4211 info@alararesources.com www.alararesources.com

ASX / MEDIA RELEASE 5 August 2025

Daris 3A5 mining license awarded in Oman

Perth, Australia: Alara Resources Limited (ASX: AUQ) (**Alara** or the **Company**), a base and precious metals producer and explorer with projects in Oman, is pleased to announce the award of a Mining License over the Daris 3A5 prospect, part of the Daris Copper-Gold Project, by the Ministry of Energy and Minerals of the Sultanate of Oman.

Highlights

- Second mining license in Oman secured by an Alara JV, reinforcing growth strategy
- High-grade copper mineralisation confirmed at Daris 3A5 prospect, including intercepts of 3.45m at 10.28% Cu, 17.2m at 8.05% Cu and 30.75m at 4.69% Cu.
- Mining license granted following an extensive approval process and negotiations
- Development pathway underway for Alara's second copper mining operation in Oman

This Announcement does not imply that potentially economic mineralisation has been discovered at Daris 3A5. Further exploration, as detailed below, is required to ascertain whether economic mineralisation exists at this prospect.

Daris 3A5 mining licence awarded

Alara Resources has been awarded a Mining License over the Daris 3A5 prospect, part of the Daris Copper-Gold Project, by the Ministry of Energy and Minerals of the Sultanate of Oman. This achievement marks a major strategic milestone for Alara, strengthening its leadership position in Oman's rapidly evolving mining sector. The Daris Copper-Gold Project (Alara 50% interest, with right to increase to 70%) is located approximately 150km west of Muscat and covers an expansive area of ~587km² (Block 7) under a mineral exploration license.

The 3A5 mining licence was awarded over a portion of Block 7 with an area of 0.65 km². Block 7, including the 3A5 mining licence, is operated by Daris Resources LLC, a joint venture company in which Alara holds management and commercial rights. A map of the mining license granted within the larger Block 7 is in Figure 1, over the page.

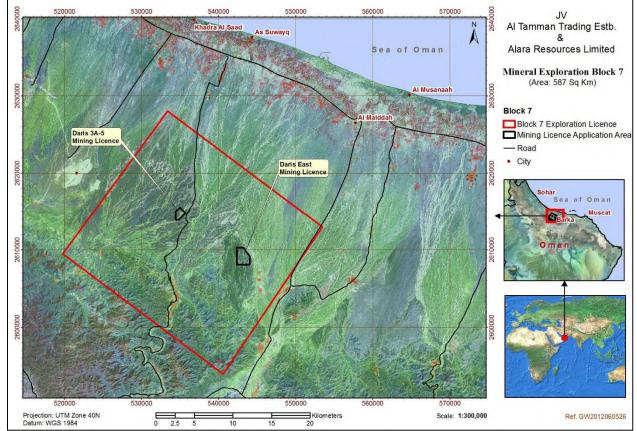


Figure 1: Block 7 Exploration license area map showing Daris 3A5 and Daris East prospects

Notes: The Daris East Mining License application is pending for grant.

Project Background

In 2013 Alara submitted mining license applications for two highly prospective copper-gold zones in Block 7 – Daris East and Daris 3A5 – following extensive exploration between 2010 and 2012, including:

- 1,200-line kilometres of helicopter-borne electromagnetic (VTEM) surveys,
- 163-line kilometres of ground magnetic surveys, and
- 20-line kilometres of ground IP and EM surveys

Alara completed 10 diamond drill holes to test and verify the historical mineralisation reported at Daris 3A5. Details of these drillholes are in Annexure 1 to this Announcement.

Exploration Success at Daris 3A5

During 2010-2012, drilling carried out by Alara at the Daris 3A5 prospect confirmed the presence of high-grade copper-gold mineralisation. Figure 2 shows the locations of the drillholes. Significant intersections are presented in Table 1. Detailed information concerning the exploration results is contained in JORC Code Table 1 in Annexure 2.

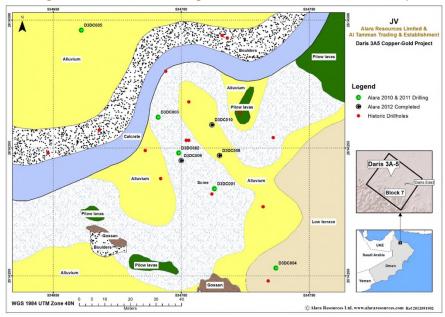


Figure 2: Daris 3A-5 mining licence and drillhole location map

Note: Drillholes D3DC006 and D3DC007 are outside the 3A5 mining licence area and, accordingly, are not material to the results in this announcement

Table 1: Daris 3A-5 Significant drilling intersections¹

	Mineralised Zo	ne - Significant	t Intersectio	ns – Daris 3a	5 Mining	Licence			
Significant Mineralization Mineralize									
Drill Hole	Intersections	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Ag (g/t)		
D3DC001	Primary	15	37.65	22.65	1.61	3.39	50.68		
	Inclusion	30	37.65	7.65	4.69	3.71	77.95		
	Primary	28.4	46.25	17.85	3.85	2.61	22.51		
D3DC002	Inclusion	34.35	46.25	11.9	5.74	2.06	24.07		
	Primary	50.6	59	8.4	4.45	1.36	20.34		
	Inclusion	50.6	54.05	3.45	10.28	3.10	46.79		
D3DC003	Primary	41	71.75	30.75	4.69	1.56	16.75		
	Inclusion	51.5	68. <i>7</i>	17.2	8.05	2.67	28.95		
D3DC008	Primary	23	35.8	12.8	0.74	6.62	31.11		
	Inclusion	33.5	35.8	2.3	3.92	5.20	106.37		
	Primary	21	31	10	0.07	3.34	5.41		
D3DC009	Inclusion	23	25	2	0.06	7.13	23.67		
	Primary	36	39		0.85	0.01	1.23		
D3DC010	Primary	57	67	10	5.62	1.16	17.82		
	Inclusion	59.35	65. <i>7</i>	6.35	8.58	1.78	27.48		

Notes:

- The cut-off grade is 0.2% Cu, in reference to intersections within the copper-rich zone.
- The drill intercepts are reported as drilled. True thickness will be calculated at the interpretation and resource modelling stage.

¹ The results are based on drilling conducted by Alara in 2010-12. Please refer to ASX announcements of 6 October 2010, 16 March 2011 and Alara's 2012 Annual Report.

Next Steps Towards Development

With the Daris 3A5 mining license secured, over the next year Alara will now:

- conduct geophysical surveys to plan drill hole locations, and
- carry out diamond core drilling to define mineralisation boundaries,

and, if warranted by further exploration results:

- issue a mineral resource estimate under the JORC Code,
- conduct metallurgical test work to characterise metal recoveries,
- define a mineral reserve under the JORC Code,
- complete mining studies,
- progress detailed mine planning activities, and
- advance discussions for toll treatment arrangements with existing copper concentrators in Oman.

Participant's Statements

Mr. Atmavireshwar Sthapak, Alara Managing Director commented:

"The award of the Daris 3A5 Mining License marks another pivotal achievement for Alara and reaffirms our deep commitment to the Sultanate of Oman's mining industry. Over the past 15 years Alara has delivered consistently – from completing exploration programs and feasibility studies to building Oman's first copper mine and processing facility at Wash-hi Majaza. Daris 3A5 is poised to become our second copper mining operation, and we are excited to unlock further value for our shareholders. We extend our sincere thanks to the Ministry of Energy and Minerals, our partners at Daris Resources LLC, and the dedicated Alara team who made this milestone possible. We look forward to building on this success to drive our next phase of growth."

Sheikh Salim Bin Mustahail Bin Ahmed Al Mashani, Chairman of Al Tamman Trading and Establishment said:

"We are excited by the granting of the Daris 3A5 Mining License, which represents a significant step forward for the development of Oman's mining sector. This achievement is the result of close collaboration between our team, Alara, and the Government authorities, particularly the Ministry of Energy and Minerals and the Environment Authority. We are proud to have worked together with our partners to achieve this important milestone. The Daris project reflects our shared vision of building a sustainable and economically impactful mining industry in the Sultanate. We look forward to supporting the next phase of development and delivering long-term benefits to Oman and its people."

Competent Person's Statement

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation compiled by Mr. Atmavireshwar Sthapak, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy (AusIMM) and Managing Director of Alara Resources Limited and as such is a full-time employee of the Company. Mr. Sthapak has more than 35 years of experience in mineral exploration, including over 14 years' experience in the style of mineralisation and type of deposit under consideration.

Mr. Sthapak has sufficient experience, which is relevant to the style of mineralization and the type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

Mr. Sthapak consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

ENDS

This announcement is authorised by:

Atmavireshwar Sthapak T | +968 2449 1162

Managing Director E | avsthapak@alararesources.com

Dinesh Aggarwal T | +61 8 9240 4211

Company Secretary E | cosec@alararesources.com

About Alara Resources

Alara Resources Limited (ASX: AUQ) is an Australian-based precious and base metals producer and explorer.

Alara is currently focused on operating the Al Wash-hi Majaza Copper-Gold mine and concentrate production facility in Oman. The Company is also continuing exploration activities at its other Omani projects, including the Block 7 exploration licence under the Daris JV, the Mullaq and Al Ajal exploration licences under the Al Hadeetha JV, the Block 8 exploration license under the Awtad Copper-Power Metal JV and the recently awarded Block 22B exploration licence under the Al Hadeetha Mining LLC JV.

Alara's mission is to become a mid-tier minerals producer which will deliver maximum shareholder value through profitable growth driven by low-cost, sustainable operations.

To learn more, please visit: www.alararesources.com.

Annexure 1 –Drillhole details and all copper-gold intercepts at (and in proximity to) Daris 3A5

							_		FROM	то						
Hole_ID	Easting	Northing	RL	Depth	Dip	Azi	Type Diamond	Purpose	(m)	(m)	Cu%	Au (ppm)	Ag (ppm)	SAMPLE_ID	CERTIFICATE	LAB
D3DC001	534713	2614234	158	71.2	-90	0	Core	Target Testing	0	1	0.0132	0.009	-0.5	10152001	u179235	ULTRATRACE
D3DC001									1	5	0.0124	0.004	-0.5	10152002	u179235	ULTRATRACE
D3DC001									5	9	0.216	0.002	1	10152003	u179235	ULTRATRACE
D3DC001									9	11	0.237	0.007	1	10152004	u179235	ULTRATRACE
D3DC001									11	13	0.129	0.007	-0.5	10152005	u179235	ULTRATRACE
D3DC001									13	15	0.0578	0.005	-0.5	10152006	u179235	ULTRATRACE
D3DC001									15	17.5	0.0318	2.32	-0.5	10152007	u179235	ULTRATRACE
D3DC001									17.5	19	0.0134	0.033	-0.5	10152008	u179235	ULTRATRACE
D3DC001									19	22	0.0572	2.94	-0.5	10152009	u179235	ULTRATRACE
D3DC001									22	25	0.0336	3.91	18	10152010	u179235	ULTRATRACE
D3DC001									25	26	0.0352	2.42	22	10152011	u179235	ULTRATRACE
D3DC001									26	29	0.0316	4.44	142	10152012	u179235	ULTRATRACE
D3DC001									29	30	0.0378	6.19	46	10152013	u179235	ULTRATRACE
D3DC001									30	31.55	0.244	6.68	267	10152014	u179235	ULTRATRACE
D3DC001									31.55	33	1.34	3.1	25.5	10152015	u179235	ULTRATRACE
D3DC001									33	34	6.04	2.76	25.5	10152016	u179235	ULTRATRACE
D3DC001									34	34.8	12.4	3.13	31.5	10152017	u179235	ULTRATRACE
D3DC001									34.8	36.14	7.55	2.94	28.5	10152018	u179235	ULTRATRACE
D3DC001									36.14	37.65	4.93	2.86	37.5	10152019	u179235	ULTRATRACE
D3DC001									37.65	41	0.144	0.308	4	10152020	u179235	ULTRATRACE
D3DC001									41	45	0.02	0.036	1	10152021	u179235	ULTRATRACE
D3DC001									45	49	0.331	0.053	1	10152022	u179235	ULTRATRACE
D3DC001									49	53	0.153	0.042	0.5	10152023	u179235	ULTRATRACE
D3DC001									53	57	0.233	0.136	2	10152024	u179235	ULTRATRACE
D3DC001									57	61	0.313	0.086	1	10152025	u179235	ULTRATRACE
D3DC001									61	65	0.083	0.046	1	10152026	u179235	ULTRATRACE
D3DC001									65	69	0.02	0.162	4.5	10152027	u179235	ULTRATRACE
D3DC001									69	71.2	0.107	0.195	2	10152028	u179235	ULTRATRACE
D3DC002									0	4	0.0114	0.003	-0.5	10152029	u179235	ULTRATRACE

Hole ID	Easting	Northing	RL	Depth	Dip	Azi	Туре	Purpose	FROM (m)	TO (m)	Cu%	Au (ppm)	Ag (ppm)	SAMPLE ID	CERTIFICATE	LAB
D3DC002	534699	2614248	162	60	-90	0	Diamond Core	Target Testing	4	8	0.0108	0.002	-0.5	10152030	u179235	ULTRATRACE
D3DC002								0 0	8	12	0.0126	0.008	-0.5	10152031	u179235	ULTRATRACE
D3DC002									12	16	0.0958	0.099	-0.5	10152032	u179235	ULTRATRACE
D3DC002									16	20	0.177	0.044	2	10152033	u179235	ULTRATRACE
D3DC002									20	24	0.0688	0.007	0.5	10152034	u179235	ULTRATRACE
D3DC002									24	26.5	0.047	0.013	-0.5	10152035	u179235	ULTRATRACE
D3DC002									26.5	27.25	0.0628	0.058	1	10152036	u179235	ULTRATRACE
D3DC002									28.4	30	0.0918	3.66	1.5	10152037	u179235	ULTRATRACE
D3DC002									30	31.6	0.0596	0.347	0.5	10152038	u179235	ULTRATRACE
D3DC002									31.6	33	0.0246	7.15	36.5	10152039	u179235	ULTRATRACE
D3DC002									33	34	0.012	4.33	49	10152040	u179235	ULTRATRACE
D3DC002									34	34.35	0.073	3.98	34.5	10152041	u179235	ULTRATRACE
D3DC002									34.35	35.4	1.41	1.38	8	10152042	u179235	ULTRATRACE
D3DC002									35.4	36	1.24	1.8	8.5	10152043	u179235	ULTRATRACE
D3DC002									36	37	4.64	2.38	17	10152044	u179235	ULTRATRACE
D3DC002									37	38	6.75	3.36	15	10152045	u179235	ULTRATRACE
D3DC002									38	39	9.71	2.7	14	10152046	u179235	ULTRATRACE
D3DC002									39	40	5.65	1.92	17.5	10152047	u179235	ULTRATRACE
D3DC002									40	40.7	3.15	1.57	14	10152048	u179235	ULTRATRACE
D3DC002									40.7	41.2	5.21	2.09	27.5	10152049	u179235	ULTRATRACE
D3DC002									41.2	42.45	7.16	2.35	33.5	10152050	u179235	ULTRATRACE
D3DC002									42.45	43.55	7.42	1.61	31.5	10152051	u179235	ULTRATRACE
D3DC002									43.55	44.75	7.05	1.97	53	10152052	u179235	ULTRATRACE
D3DC002									44.75	46.25	5.99	1.57	30.5	10152053	u179235	ULTRATRACE
D3DC002									50.6	51.6	10.4	2.9	44	10152054	u179235	ULTRATRACE
D3DC002									51.6	52	7.74	1.49	23.5	10152055	u179235	ULTRATRACE
D3DC002									52	53.05	5.58	1.21	30.5	10152056	u179235	ULTRATRACE
D3DC002									53.05	54.05	16.1	5.94	76	10152057	u179235	ULTRATRACE
D3DC002									54.05	56	0.213	0.099	1	10152058	u179235	ULTRATRACE
D3DC002									56	59	0.497	0.185	2.5	10152059	u179235	ULTRATRACE
D3DC002									59	60	0.0326	0.011	-0.5	10152060	u179235	ULTRATRACE

Hole ID	Easting	Northing	RL	Depth	Dip	Azi	Туре	Purpose	FROM (m)	TO (m)	Cu%	Au (ppm)	Ag (ppm)	SAMPLE ID	CERTIFICATE	LAB
	-			200			Diamond	. u.peec	(,	(,		,,	<u> </u>	_		
D3DC003	534691	2614262	161	71.75	-90	0	Core	Target Testing	0	4	0.679	0.196	3.5	10152061	u179235	ULTRATRACE
D3DC003									4	8	0.267	0.059	1	10152062	u179235	ULTRATRACE
D3DC003									8	12	0.298	0.091	2	10152063	u179235	ULTRATRACE
D3DC003									12	16	0.306	0.093	1.5	10152064	u179235	ULTRATRACE
D3DC003									16	20	0.0174	0.006	-0.5	10152065	u179235	ULTRATRACE
D3DC003									20	24	0.0256	0.009	-0.5	10152066	u179235	ULTRATRACE
D3DC003									24	28	0.018	0.009	-0.5	10152067	u179235	ULTRATRACE
D3DC003									28	29.2	0.255	0.014	0.5	10152068	u179235	ULTRATRACE
D3DC003									29.2	32	0.317	0.062	3	10152069	u179235	ULTRATRACE
D3DC003									32	33.5	0.139	0.04	-0.5	10152070	u179235	ULTRATRACE
D3DC003									33.5	37	0.0696	0.031	-0.5	10152071	u179235	ULTRATRACE
D3DC003									37	41	0.0932	0.015	2	10152072	u179235	ULTRATRACE
D3DC003									41	43	0.35	0.039	-0.5	10152073	u179235	ULTRATRACE
D3DC003									43	45	0.647	0.558	1.5	10152074	u179235	ULTRATRACE
D3DC003									45	47	0.385	0.112	1	10152075	u179235	ULTRATRACE
D3DC003									47	49	0.574	0.182	2.5	10152076	u179235	ULTRATRACE
D3DC003									49	51.5	0.393	0.075	1.5	10152077	u179235	ULTRATRACE
D3DC003									51.5	51.9	1.55	5.25	50	10152078	u179235	ULTRATRACE
D3DC003									51.9	52.65	3.11	4.52	106	10152079	u179235	ULTRATRACE
D3DC003									52.65	53.45	4.14	5.48	73.5	10152080	u179235	ULTRATRACE
D3DC003									53.45	54.45	6.58	2.55	22.5	10152081	u179235	ULTRATRACE
D3DC003									54.45	55.45	5.87	1.88	8.5	10152082	u179235	ULTRATRACE
D3DC003									55.45	56.5	9.22	2.16	12	10152083	u179235	ULTRATRACE
D3DC003									56.5	57.25	7.69	1.89	10	10152084	u179235	ULTRATRACE
D3DC003									57.25	58.75	7.83	1.87	10.5	10152085	u179235	ULTRATRACE
D3DC003									58.75	59.55	8.01	3.38	23	10152086	u179235	ULTRATRACE
D3DC003									59.55	60	7.91	1.83	21.5	10152087	u179235	ULTRATRACE
D3DC003									60	61	7.66	1.74	19.5	10152088	u179235	ULTRATRACE
D3DC003									61	62	4.15	2.37	25	10152089	u179235	ULTRATRACE
D3DC003									62	63	11	2.76	32.5	10152090	u179235	ULTRATRACE
D3DC003									63	64	7.41	2.27	24	10152091	u179235	ULTRATRACE

Hole ID	Easting	Northing	RL	Depth	Dip	Azi	Туре	Purpose	FROM (m)	TO (m)	Cu%	Au (ppm)	Ag (ppm)	SAMPLE_ID	CERTIFICATE	LAB
D3DC003				-	-			-	64	65	10.2	3.1	32	10152092	u179235	ULTRATRACE
D3DC003									65	65.65	9.33	2.69	29	10152093	u179235	ULTRATRACE
D3DC003									65.65	66.4	14.7	2.57	31.5	10152094	u179235	ULTRATRACE
D3DC003									66.4	66.9	2.55	0.716	9	10152095	u179235	ULTRATRACE
D3DC003									66.9	68.7	13.2	2.98	36	10152096	u179235	ULTRATRACE
D3DC003									68.7	69.5	0.285	0.049	1	10152097	u179235	ULTRATRACE
D3DC003									69.5	70	0.312	0.046	1	10152098	u179235	ULTRATRACE
D3DC003									70	71.75	0.245	0.048	0.5	10152099	u179235	ULTRATRACE
D3DC004	534737	2614203	138	80	-90	0	Diamond Core	Target Testing	No Samı	oles Colle	ected					
D3DC005	534661	2614296	179	80	-90	0	Diamond Core	Target Testing	No Samp	oles Colle	ected					
D3DC006	531620	2616840	163	150	-90	0	Diamond Core	Target Testing	No Samp	oles Colle	ected					
D3DC007	531400	2616520	163	150	-90	0	Diamond Core	Target Testing	No Samp	oles Colle	ected		T			
D3DC008	534715	2614247	157	53	-68	220	Diamond Core	Target Testing	14	15	0.1683	0.01	-0.5	5012104	G-5477	SHIVA
D3DC008									15	16	0.0767	-0.005	-0.5	5012105	G-5477	SHIVA
D3DC008									16	17	0.0515	-0.005	-0.5	5012106	G-5477	SHIVA
D3DC008									17	18	0.0451	0.005	-0.5	5012107	G-5477	SHIVA
D3DC008									18	19	0.0252	-0.005	-0.5	5012108	G-5477	SHIVA
D3DC008									19	20	0.0431	0.014	-0.5	5012110	G-5477	SHIVA
D3DC008									20	21	0.0521	0.019	-0.5	5012111	G-5477	SHIVA
D3DC008									21	22	0.0484	0.359	0.6	5012112	G-5477	SHIVA
D3DC008									22	23	0.0595	0.067	-0.5	5012113	G-5477	SHIVA
D3DC008									23	24	0.0615	8.504	1.3	5012114	G-5477	SHIVA
D3DC008									24	25	0.0549	7.338	1.9	5012115	G-5477	SHIVA
D3DC008									25	26	0.0432	3.67	2.4	5012116	G-5477	SHIVA
D3DC008									26	27	0.0581	3.205	1.4	5012117	G-5477	SHIVA
D3DC008									27	28	0.047	0.636	0.7	5012118	G-5477	SHIVA
D3DC008									28	29	0.0366	8.239	6	5012119	G-5477	SHIVA
D3DC008									29	30	0.034	12.364	30.9	5012121	G-5477	SHIVA
D3DC008									30	31	0.0463	11.07	13.2	5012122	G-5477	SHIVA

Hele ID	Footing	Morthing	DI	Donth	Din	A =:	Tuno	Durnaga	FROM	TO (m)	Cu%	Au (nnm)	Ag (nnm)	CAMBLE ID	CERTIFICATE	LAB
Hole_ID	Easting	Northing	RL	Depth	Dip	Azi	Туре	Purpose	(m)	(m)		Au (ppm)	Ag (ppm)	SAMPLE_ID	CERTIFICATE	
D3DC008									31	32	0.0463	7.792	14.6	5012123	G-5477	SHIVA
D3DC008									32	33	0.0309	7.116	45.6	5012124	G-5477	SHIVA
D3DC008									33	33.5	0.0259	5.641	71.1	5012125	G-5477	SHIVA
D3DC008									33.5	34	0.9351	13.701	331.4	5012127	G-5477	SHIVA
D3DC008									34	35	5.903	2.126	39.1	5012128	G-5477	SHIVA
D3DC008									35	35.8	3.305	3.734	49.8	5012129	G-5477	SHIVA
D3DC008									35.8	37	0.0361	0.14	0.9	5012130	G-5477	SHIVA
D3DC008									37	38	0.0152	0.015	-0.5	5012131	G-5477	SHIVA
D3DC008									38	39	0.0145	0.03	-0.5	5012132	G-5477	SHIVA
D3DC008									39	40	0.0175	0.024	-0.5	5012133	G-5477	SHIVA
D3DC008									40	41	0.0453	1.012	1.1	5012134	G-5477	SHIVA
D3DC008									41	42	0.0548	0.448	0.9	5012135	G-5477	SHIVA
D3DC008									42	43	0.0549	0.183	-0.5	5012136	G-5477	SHIVA
D3DC008									43	44	0.0802	0.805	1.3	5012137	G-5477	SHIVA
D3DC008									44	45	0.5189	0.17	-0.5	5012139	G-5477	SHIVA
D3DC008									45	46	0.0145	0.01	-0.5	5012141	G-5477	SHIVA
D3DC008									46	47	0.0168	-0.005	-0.5	5012142	G-5477	SHIVA
D3DC009	534700	2614245	160	66	-75	227	Diamond Core	Target Testing	20	21	0.0306	0.011	-0.5	5012143	Daris-5517	SHIVA
D3DC009								3 0	21	22	0.0413	1.74	0.7434	5012144	Daris-5517	SHIVA
D3DC009									22	23	0.1037	3.66	-0.5	5012145	Daris-5517	SHIVA
D3DC009									23	24	0.0914	8.716	40.467	5012146	Daris-5517	SHIVA
D3DC009									24	25	0.0268	5.541	6.8717	5012147	Daris-5517	SHIVA
D3DC009									25	26	0.0377	2.29	0.6579	5012149	Daris-5517	SHIVA
D3DC009									26	27	0.1058	1.806	-0.5	5012150	Daris-5517	SHIVA
D3DC009									27	28	0.1287	5.077	-0.5	5012151	Daris-5517	SHIVA
D3DC009									28	29	0.0721	2.845	-0.5	5012152	Daris-5517	SHIVA
D3DC009									29	30	0.0411	0.125	-0.5	5012153	Daris-5517	SHIVA
D3DC009									30	31	0.0765	1.581	2.8898	5012154	Daris-5517	SHIVA
D3DC009									31	32	0.0414	0.145	3.7778	5012155	Daris-5517	SHIVA
D3DC009									32	33	0.035	0.077	8.8248	5012156	Daris-5517	SHIVA
D3DC009									33	34	0.0149	0.028	3.1684	5012157	Daris-5517	SHIVA

Hole ID	Easting	Northing	RL	Depth	Dip	Azi	Туре	Purpose	FROM (m)	TO (m)	Cu%	Au (ppm)	Ag (ppm)	SAMPLE ID	CERTIFICATE	LAB
D3DC009					•		71		34	35	0.0137	0.107	-0.5	5012158	Daris-5517	SHIVA
D3DC009									35	36	0.1722	0.018	5.4151	5012159	Daris-5517	SHIVA
D3DC009									36	37	0.2304	0.02	2.1449	5012161	Daris-5517	SHIVA
D3DC009									37	38	0.3095	-0.005	1.0312	5012162	Daris-5517	SHIVA
D3DC009									38	39	2.0045	0.013	-0.5	5012164	Daris-5517	SHIVA
D3DC009									39	40	0.072	0.015	-0.5	5012165	Daris-5517	SHIVA
D3DC009									40	41	0.0178	0.017	-0.5	5012166	Daris-5517	SHIVA
D3DC010	534712	2614259	158	75	-85	227	Diamond Core	Target Testing	53	54	0.1704	-0.005	-0.5	5012167	Daris-5518	SHIVA
D3DC010									54	57	0.1321	0.016434	-0.5	5012168	Daris-5518	SHIVA
D3DC010									57	58	0.4685	-0.005	-0.5	5012169	Daris-5518	SHIVA
D3DC010									58	59.35	0.4617	0.050688	0.5252	5012170	Daris-5518	SHIVA
D3DC010									59.35	60	4.3455	1.904723333	11.459	5012172	Daris-5518	SHIVA
D3DC010									60	61	6.2118	1.453943333	6.8197	5012173	Daris-5518	SHIVA
D3DC010									61	62	6.3961	1.313656667	6.8386	5012174	Daris-5518	SHIVA
D3DC010									62	63	6.2243	1.645526667	9.9795	5012175	Daris-5518	SHIVA
D3DC010									63	64	12.8395	2.429203333	67.758	5012176	Daris-5518	SHIVA
D3DC010									64	65	11.596	1.89992	44.173	5012177	Daris-5518	SHIVA
D3DC010									65	65.7	11.9893	1.92423	44.946	5012178	Daris-5518	SHIVA
D3DC010									65.7	67	0.5088	0.17248	1.927	5012179	Daris-5518	SHIVA
D3DC010									67	68	0.0672	0.05346	0.847	5012181	Daris-5518	SHIVA
D3DC010									68	69	0.1721	0.073788	1.0247	5012182	Daris-5518	SHIVA
D3DC010									69	70	0.0321	0.005016	-0.5	5012183	Daris-5518	SHIVA
D3DC010									70	71	0.018	-0.005	-0.5	5012184	Daris-5518	SHIVA

Annexure 2 JORC Code, 2012 Edition – Table 1 (Daris 3A5)

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralization that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (e.g. submarine nodules) may warrant disclosure of detailed information. 	lithology and mineralization intensity then sawn.

Criteria	JORC Code explanation	Commentary
		extension areas of the prospect and not part of Daris 3A5 mineralisation.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 The project Daris 3A5 prospect was drilled using the diamond drill core (DC) drilling technique to obtain the samples. A total of 10 DC drill holes were drilled. All holes were drilled with HQ diameter with standard tube, at places the NQ core was combined with NQ core drilling. 8 holes were drilled vertically and 2 were inclined. None of the drill holes provided oriented core. No downhole surveys were carried out.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximize sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Reasonable core recovery of plus 80% from all mineralised intervals was achieved from all drill core intervals. Recovery measurements were poor in broken rock, and this was reflected in lower weight of the samples. A quality drill rig and experienced team assured high core recovery was achieved from all drill holes. Diamond drilling used drill muds and short runs in broken ground to maximize recovery. Relationship analyses between sample recovery and grade were not carried out as no issue of significant core loss were encountered.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies, and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Core drill holes were logged for geology and alteration, and no geotechnical logging was carried out. Logging followed standard operating procedure designed by a senior geologist and supervised by the Competent Person. The output of logging provided all data required for reporting exploration results, Quantitative logging was carried out where length of interval logged and sample recovered is recorded. The percentages of minerals have been estimated. A qualitative description has been provided wherever required. Drill core photography has been conducted with a small board on which borehole number, core box number and drill core interval is marked. The entire drill holes lengths were logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximize representivity of samples. Measures taken to ensure that the sampling is representative of the in situ 	 Drill core samples were split by saw or manually (manually in case of crushed material in tectonic zones, massive, massive sulphide zones or sandy material from the initial meters of drilling). Drill core samples represented adequate half-core samples. The DC samples after QC samples inserts, packing and shipping to laboratory were checked against sample submittal form. The DC after QC samples inserts, packing and shipping to laboratory were checked against sample submittal form. At the laboratory the samples were sorted

Criteria	JORC Code explanation	Commentary
	material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled.	 and dried. Primary preparation was by crushing the whole sample. The samples were then split with a riffle splitter to obtain two equal portions. One portion was then pulverized in a vibrating pulveriser. The remainder were held for further analysis. There was no inappropriateness observed with respect to drill core sample Preparation. Sample preparation technique is considered appropriate for reporting the results. Quality control was adopted for all sub-sampling stages. During initial sub-sampling while drill core splitting, the adequacy of splitting was checked by the project geologist to ensure that splitting was not biased. Field blanks were inserted into the sample stream to check for contamination. Industry standard sample preparation by accredited laboratories was employed. Sample sizes are appropriate for the commodity and a higher amount of pulverized material (split of 1.2 kg after crushing) to reduce a possible "nugget effect".
Quality of assay data and laboratory tests	 The nature, quality, and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 At the laboratory the samples were analysed by Firing a 40 gm (approx.) portion of the sample. This is the classical fire assay process and gives total separation of Gold, Platinum and Palladium in the sample. Au, Pt, Pd were determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. The sample(s) were digested and refluxed with a mixture of acids including hydrofluoric, nitric, hydrochloric and perchloric acids. This extended digest approaches a total digest for many elements however some refractory minerals are not completely attacked. Fe, Al, Ti, Mn, Ca, P, Mg, K, Na, Co, Cr, Cu, Ni, V, Zn were determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. The Competent Person reviewed the laboratory QA/QC (lab internal QA/QC) procedure and results and external QA/QC (quality control samples inserted by Alara) procedures and results. Alara quality control procedure is well documented. External QA/QC includes certified reference materials (standards), field blanks, field duplicates, check samples and check assays. Acceptable levels of accuracy and precision were established.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All analytical values of each individual sample were verified against a signed laboratory PDF certificate. All compiled data was checked for errors and missing data. The remaining drill core (second half core) is available for future use. Assay data were not adjusted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings, and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar data was surveyed using DGPS. Multi-shot downhole surveys were not carried out. The coordinate system UTM, Zone = 40 North, Datum Transformation = WGS 84 was used.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 This announcement relates to historical drilling and exploration results Drillhole collar location indicating appropriate drill spacing is presented in Figure-2 of the announcement. Drillholes D3DC006 andD3DC007 are not shown in the map as they were drilled to test extensional anomalies outside the Daris 3A5 prospect. Data spacing and distribution was designed to test historical drilling by other explorers and confined to surface outcrops and geophysical data. Drill spacing was designed to test geological and grade continuity for further exploration and not for a mineral resource estimate. Sampling compositing was not applied during sampling or on sampling data before calculating drill hole intersections.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	No core orientation was carried out.
Sample security	The measures taken to ensure sample security.	 Good security of samples was maintained from dispatch of samples until data storage. Samples were in the form of half core, with some rejects stored in in laboratory. Transport to the laboratory was done using professional couriers and secured, meeting all necessary requirements for chain of custody. Tracking sheets were implemented to track sample progress.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Data was reviewed in detail. During the site visit in 2011. Mr. Atmavireshwar Sthapak (MAusIMM) confirmed the pillars of Alara and pre-Alara drill holes. The site visit by Mr. Sthapak included a review of logging spot checks, sampling and logging procedures as well as geology.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 The Block 7 exploration license and recently awarded Daris 3A5 mining license is held by Daris Resources LLC (DRL), a limited liability JV company incorporated in the Sultanate of Oman. Shareholders in the company are Alara Oman Operations Pty Ltd (50%) a wholly owned subsidiary of Alara Resources Ltd and Al Tamman Trading and Establishment LLC (50% related to Muscat Overseas Group of Companies). Alara has potential to increase its interest in DRL to 70%. Alara Resources Limited (ASX: AUQ) is an Australian based mining and mineral exploration company with a portfolio of projects in Oman. An exploration license with total area 587 km² (Block-7) covering Daris copper-gold mineralization was granted in 2008 and was renewed annually until 2013. The further renewal of the exploration license has been pending since then. The Daris 3A5 mining license now granted provides rights to further explore and mine the relevant area of the prospect. Two applications for mining licenses (ML) over an area of 1.5 sq.km at the Daris East prospect and 1.1 sq.km at the Daris 3A5 prospect within the Block 7 Exploration License were submitted in October 2012. As part of the ML approval process the Daris 3A5 ML application has since been processed and inspected by several Government Regulatory authorities including Ministries of Tourism, Housing, Archaeology, Defense, Water Resources, Environment, Local Municipality etc. Figures in the announcement show the location and extent of Daris 3A5 mining license awarded and the location of Block 7 exploration license and two prospects (Daris East and Daris 3A5). The area of the mining license areas was reduced by the Ministry of Mining

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	due to concerns associated with a seasonal creek which flows nearby the prospect. If there is mineral production within the license area all applicable royalties will be payable to the Government. Appropriate consents have been obtained from local communities around the license area in support of the grant of the ML. The Block 7 Daris copper prospect was identified in the early 1970s by geophysical and geological studies carried out by the Ministry of Petroleum and Minerals. This was followed up with Government-sponsored drilling campaigns by Prospection Limited, BRGM, the Ministry of Petroleum & Minerals (MPM) itself and the Oman Mining Company (OMCO) from 1976 to 1992. The Block 7 area was also covered by the Cooperative Mineral Exploration program conducted by Japan International Cooperation Agency (JICA) - (Metal Mining Agency of Japan) during 1995 and 1996. All the prospects in the Daris Area were selected from a 1974 airborne electromagnetic survey. A first interpretation by GEOTERREX suggested six low priority anomalous zones in the overall area, which was surveyed in 1976. One of them was selected as a third-priority anomaly because of the narrow shape of the EM response in a regional conductive background and was found to correspond to small gossan outcrop located in flat terrain, 3km Northwest of Daris village. The first geochemical and geophysical investigations by Prospection Ltd were followed up by BRGM by means of core drilling, which intersected ore and some massive sulphides at shallow depth in the gossan area. Following this discovery, a complete restudy of GEOTERREX data was undertaken by M. Koning, which led to the selection of twenty new INPUT anomalies around Daris that were surveyed in 1977 without significant results. The following details summarise the Prospection Ltd work conducted in the Daris area from 1976 to 1978. 1976: Geological mapping, soil analysis, gravity, P.E.M., 15 drill holes 1977: P.E.M. 12 drill holes, geological mapping, geochemistry, magnetics Some of the drill h

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting, and style of mineralization.	 In general, the rocks of the Daris Area belong to the Samail ophiolite succession, overlaid by minor Hawasina (Supra-ophiolite sediments) rocks and Tertiary autochthonous sediments. Gravel cover is extensive in the Wadi Buwayrik, Wadi Hawqayn and Wadi Falah zones. The Samail Ophiolite includes tectonites, a cumulate sequence, high level gabbro, a sheeted dyke complex, Samail volcanic rocks and intrusive rocks. Samail volcanic rocks (SV) are exposed in the central part of Block 7. These rocks are resultant ore forming horizons. Two horizons of Samail volcanic rocks are distributed in the central part of Block 7 area in W-NW to S-SE direction. Lower volcanics occur as brownish weathering basaltic pillows that occur in very limited outcrops and are usually crosscut by numerous dykes feeding intrusives in the roots of upper volcanic centres, located in three distinct areas Buwayrik North, Buwayrik east west Hawqayn and West Daris. Lower volcanics were only preserved in the areas that are now covered by extensive gravel sheets, such as the Daris East and Wadi Hawqyan sectors, and perhaps the Wadi Buwayrik zone. The area around Daris 3A5 is structurally complex and a large part of it is covered by wadi gravels. Two prominent gossan outcrops and altered clay formations were demarcated for target test drilling. In the Central West part of Block 7, Daris Mineralisation 3A5 was reported by BRGM and OMCO. This mineralisation exists in the middle volcanics (V2) and consists of silicified gossan and stockwork. In general the copper (and gold) mineralization is typical in style of Volcanic Hosted Massive Sulphide with majority of copper occurring as stock work of sulphide mineral veins injected in to light grey basalt along with silicate veins forming highly brecciated host basalt. The drilling at Daris 3A5 has identified presence of a massive sulfide lens overlying these stockworks, indicating the formation of black smokers on ocean floors. No microscopic stud
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	 The collar locations, survey data, drill hole length, logging data and other data related to drilling were reviewed by the competent person before reporting the results. Drill hole intersections of Cu and Au were generated as part of exploration data assessment.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Annexure 1 provides the details of drilling carried by Alara at Daris 3A5 prospect. Drill hole intersections generated and reported were part of exploratory data assessment and are included in this ASX/media release. Drill hole intersections of copper and corresponding gold mineralization were generated as length weighted averages, no top cut was applied. The cutoff grade applied is 0.2 Cu % as potential economic cut off to delineate potential mineralization. The cut off also represents natural break/sharp change in assays. A cut-off grade of 0.2% Cu used in exploration results reporting represents a likely optimum cut-off grade for delineating potential mineralization. Cu and Au grades for particular drill hole intersections were calculated as length-weighted averages to give the same weight to all samples of particular drill hole intersections. No assumptions of metal equivalent have been used.
Relationship between mineralization widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drill hole intersections results are reported as down-hole lengths. No exercises for resource definitions were carried out. The drill intercepts are reported as drilled. True thickness will be calculated at the interpretation and resource modelling stage
Diagrams Balanced reporting	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Included in the body of the announcement. Drill hole intersections as an outcome of exploration were generated and evaluated from all drill holes. This includes both high grade and low grade intersections (see Annexure 1)

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Geology of the project area, results of a geophysical survey, geochemical survey, geological observations, summary of multi element analyses of samples were studied and evaluated by Atmavireshwar Sthapak (MAusIMM). The available geological and geophysical data broadly covers Block 7 at a regional scale and is not considered meaningful and material for any disclosure for the Daris 3A5 prospect.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The immediate focus of future work will remain on the definition of current mineralisation at Daris 3A5. More drilling will be planned to delineate the boundaries of mineralisation and a potential resource definition. Further exploration will also involve more ground geophysical surveys and geotechnical and metallurgical investigations. Infill and extensional drilling will be planned to define any resource as may exist.